Merricks y los vicios de la metafísica analítica
A veces, pienso que la metafísica se merece su mala fama. O tal vez, mas bien son los filósofos que se dedican a la metafísica los que se merecen la mala fama. Pasan sus vidas tratando de reducir unos objetos y fenómenos a otros. Pero ahora, después de siglos de reducción, veo difícil que lleguemos a una reducción sustancial, es decir, que reduzcamos (objetos y fenómenos de) una categoría importante de la realidad a (objetos y fenómenos de) otra. No. Ni vamos a reducir lo mental a lo físico, ni lo asimétrico a lo simétrico, ni lo intensional a lo extensional, ni lo abstracto a lo concreto, ni lo plural a lo singular, etc. etc. Y aunque pudiéramos hacerlo, ¿qué ganariamos? Quienes se toman en serio a Benacerraff/Quine han de pensar que habremos ganado algo de claridad en nuestra imágen del mundo. Sin embargo, muchas veces, aquello a lo que se buscan reducir las cosas suele ser tan oscuro como aquello que se busca reducir. De cualquier manera, creo que hay mejores cosas por hacer si nos interesa la metafísica como filósofos. Podemos dar cuenta de la estructura al interior – por así decirlo – de cada una de estas categorías. Por ejemplo, podemos tratar de dar cuenta de lo asimétrico, sin reducirlo a lo simétrico, de una manera que nos parezca menos misterioso. Podemos adoptar una especie de primitivismo minimalista, donde podamos dibujar relaciones constitutivas entre elementos de la misma categoría ontológica. Por ejemplo, yo creo que, si bien no hay manera de reducir el carácter representacional de, digamos, las proposiciones a algo no representacional, sí podemos pensar en algo igualmente representacional en las proposiciones que sea responsable de su representar. En otras palabras, si aceptamos, con Trenton Merricks que
“Si las cosas esenciales de una proposición que representan de una cierta manera fueron explicadas por cualquier cosa en absoluto, se explicaría por sus otros rasgos que son también ellos mismos distintivos de proposiciones. Por ejemplo, la mayoría de los defensores de las proposiciones estructuradas diría no sólo que una proposición que representa esencialmente las cosas como una cierta manera se explica por los constituyentes y la estructura de una proposición, sino también que tener dichos constituyentes y estructura es en sí misma distintiva de las proposiciones”.
“If a proposition’s essential representing things in a certain way were explained by anything at all, it would be explained by its other features that are themselves also distinctive of propositions. For example, most defenders of structured propositions would say not only that a proposition’s essentially representing things as being a certain way is explained by a proposition’s constituents and structure, but also that having such constituents and structure is itself distinctive of propositions.” (Merricks 2015, 195)
podemos entonces pensar que algo de la proposición debe ser la razón (metafísica, es decir,debe fundamentar) de su representar. Y dado que, tradicionalmente en las teorías de las proposiciones estructuradas, los constituyentes de las proposiciones no representan ellos mismos, sino que mas bien parecen formar parte de aquello que la proposición representa, entonces debe ser otra cosa que no sean los constituyentes. Por lo tanto, dado que no queda otra cosa mas que la estructura, ésta debe ser la que sea representacional. En mi teoría de la estructura proposicional, las estructuras son fusiones de lugares (o roles o papeles, o como quieran llamarlos) por lo que, éstas deberían de ser ellas mismas representacionales. Así que, por ejemplo, el papel que Juan ocupa en “Juan vive en Venezuela” es el de ser aquel que, según la proposición, vive en venezuela, es decir aquello que la proposición representa como viviendo en Venezuela. El que Juan juegue dicho papel no hace a Juan, de repente una entidad intensional, pero sí lo hace ser parte de aquello de lo que habla la proposición. Es obvio que la proposición y aquello de lo que trata son cosas distintas: la proposición es representacional, aquello de lo que trata no (tiene por qué serlo). Esto es algo que Merricks insiste una y otra vez; y por eso concluye – correctamente, a mi parecer – que no podemos reducir las proposiciones a aquello de lo que tratan. Desafortunadamente, también concluye que, dado que si la proposición tuviera constituyentes, estos serían aquello de lo que la proposición trata (algo que asumen todos los que piensan que las proposiciones están estructuradas, es decir, que tienen constituyentes), esto significaría que las proposiciones no podrían reducirse a sus constituyentes. Pero, por definición, la relación de constitución es tal que lo constituido se reduce a sus constituyentes. Lo que implica que pensar que las proposiciones tienen constituyentes nos lleva a una contradicción. Por lo tanto, concluye Merricks, las proposiciones no tienen constituyentes.
El error en el razonamiento de Merricks es cómo interpreta la idea de que lo constituido se reduce a sus constituyentes. Como es bien sabido, esto no significa que todas las propiedades de lo constituido deben fundamentarse por completo en hechos acerca de los constituyentes independientes de su ser constituyentes de lo por ellos constituido. El ejemplo obvio son propiedades como las de ser un complejo, estar constituido o estar estructurado. La complejidad de un complejo compuesto solamente de simples, por supuesto, no está fundamentada por completo en la simplicidad de sus constituyentes aislados. Lo simple no puede fundamentar lo complejo así. Lo no estructurado no puede fundamentar lo estructurado así. La razón (metafísica) por la cual algo estructurado está estructurado está en su estructura, no en las entidades que ocupan sus lugares, y esta estructura, como bien se sabe, no es un constituyente más. Así igualmente, podemos apelar a la estructura para fundamentar lo representacional de las proposiciones sin violar el dictum de que los constituyentes son aquello de lo que la proposición trata. Las proposiciones representan, no porque tengan algún elemento constituyente representacional, sino porque su estructura misma es representacional – o mas bien, es la estructura de algo que representa, pues la estructura misma no representa por sí sola.
En otras palabras, las proposiciones representan porque están relacionadas representacionalmente con aquello que representan.
Comentarios
Publicar un comentario